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SPECTRAL ESTIMATION ACCURARY
WITH ARBITRARY TRUNCATING FUNCTIONS*

M. J. Lahart
University of California

Los Alamos Scientific Laboratory
Los A’lames,New Mexico 87545

ABSTRACT

A Fourier domain derivation is given for the bias and statis-
tical stability of power spectral estimates of limited amounts of
data. The data is represented as the product of a stationary
stochastic process and a truncating function that is zero outside
a specified region. The error estimates are derived-for arbitrary
truncating functions, and they agree with already known expressions
when the truncating function is a rectangle. Comparisons of spectrul
estimate accuracies for rectangle and raised cosine truncations are
given.

Many kinds of staticmary processes can be characterized and studied by

analyses of their Wiener spectra. Knowledge of spectral functions is applied

to image processing problems in the Helstrom filtering,’ in homomorphic filtering

and other restoration techniques, and it is often helpful in evaluating the

effects of optical systems on specific kinds of images. Spectral calculations

can be misleading, however, if attention is not given to the statistical errors

that are associated with their calculation from specific data.” The significance

that is assigned to a Wiener spectral computation depends on the method used

to control these errors.

Wiener spectra are ensemble averages, and the properties of individual

members of the ensemble generally differ from their average. Meaningful analy-

sis is carried out by computing properties whose standard deviations are small

and which, nevertheless, are appropriate to the problem. For example, we

rarely use periodogram estimates of spectral data but, instead, associate with

a given frequency of a spectral function the average of several neighboring

perlodogram components, be~ause the standard deviation of this quantity is

smaller. The computation of this average is the well-known process of windowing.

●Work performed under the auspices of the U.S. Department of Energy,
Contract No. W7405-ENG-36.



The selection of a section of data for analysis creates another kind

of error. Power spectra are defined only for stationary processes, and a

truncated process, which is zero outside some specified region and nonzero in-

side it, is not stationary. Finite segments of data are intended to approxi-

mate the infinite integration region of the Fourier integral, and the truncation

error, often called bias, can be made smaller by choosing a larger segment of

data. It may not always be possible to analyze an arbitrarily large segment,

however. The image process may be locally stationary and treated as stationary

only within limited regions, or there may simply not be very much data avail-

able. In cases such as these, it is important to estimate bias and to design

measurement and computation procedures to minimize it.

Methods of estimating bias and random errors of spectral estimates are

described in several reference works.3,4 Derivations are rather long and are

necessarily restricted to data that is limited by multiplication with a rect-

angular”truncating function. This type of truncation function is not always

appropriate for the processing of locally stationary images. It is often ad-

vantageous to segment such an image into stationary regions that overlap so

that severe divisions between regions are not visible. When this is done, a

raised cosine truncating function has proved to be more useful than a rectangle.

We will derive”the bias and random errors of stationary data by con-

sidering Fourier domain quantities. As with direct domain derivations, we

will assume only that the data is stationary and, to estimate the random error,

that it is normally distributed. In the Fourier domain, the computation of

the error estimates is relatively straightfomard, and it is easily extended

to new situations such as nonrectangular truncation functions.

STATISTICS OF TRUNCATED DATA

Ye represent a finite segment of a stationary process iA(x) as the

product of the stationary process i(x) and a truncating function t(x) that

is zero outside the finite region.

IA(X) = f(x)t(x)s (1)

If the Fourier transforms of iA(x), i(x) and t(x) are gA(f)3 g(f) and ~(f), the

transform gA(f) of Eq. (1) is
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g/$f) ‘fg(f, )’r(f - fl)dfl . (2)

The integral of the square of the magnitude of gA(f) over” some small region

of the frequency domain is the Wiener spectrum that might be measured at the

center of that region. Usually, the integral is multiplied by a weighting

function Q(f), known as a window, so that the integral is replaced by iiconvolu-

tion. The measured Wiener spectrum is

p(fO) ‘\Q(f - fO)/gA(f)12df

or, when we substitute Eq. (2) into Eq. (3)

P(fO) ‘~ Q(f - fO)~*(f - fl)~(f - flO)g*(fl )g(fl-)dfldf, ”d~c .

(3j

(4;

In order to compute the bias of our estimate of P(f), we compute the ensemble

average of P(f) of p(f) in terms of G(f), the true Wiener spectrum of i(x).

We recall that spectral components of a stationary process are delta-correlated,

and their ensemble average can be expressed

<9*(fl)9(f1°)> = G(f)t(f - f“) .

When we make use of Eq. (5) to compute the ensemble average of Eq. (4), the

measured Wiener spectrum becomes

P(fO) ‘~Q(f - fo)l~(f - f1)]2G(f1)df1df .

(5)

(6)

We can estimate the degree of bias ifwe know G(fl) approximately.

The standard deviation u(fO) of P(fO) is a measure of its statistical

stability, the extent to which the Wiener spectrum of a segment of data differs

from the average of an ensemble of similar segments. This quantity can be

computed similarly to the Wiener spectrum average. We find the value of

u2(fo) = <p*(fo)> - <Il(fo)>z . (7)

With the aid of Eq. (4), this can be expressed in terms of g(f)
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u2(f) =~Q(f’ - fO)Q(f- f&(f” - f2)T*(f” - f2”)?*(f - f,h(f- flu)

X<g(f2)g*(f2’’)g*(f1)g(f@df1df1 “df2df2”dfdf”- <p(f)>* . (8)

Ifwe assume that the process i(x) is Gaussian, the real and imaginary parts

of its Fourier transform are normally distributed. A theorem that relates

ensemble averages of products of normally distributed quantities leads to the

relationship

<9(f2)9*(f2”)9*(f, )9(f,”)> = @f2)9*(f2”)><g*(f,)! 3(f,” )>

+ <9(f2)g*(f, )><9*(f2’Mf,”)> (9)

+ <g(f2)g*(-f, ’)><g*(f2”M-f, )> .

To compute the last term of Eq. (9), we have made use of the relationship be-

tween positive and negative frequency portions of the Fourier transform of a

real function

g(f) = g*(-f) . (lo)

When we substitute Eq. (9) into Eq. (8) and use Eq. (5) to express the ensemble

averages in terms of the Wiener spectrum G(f), the expression for the variance

u2(f) becomes

Y

U*(f) =
I

Q(f” - fo)[Q\f-fo)+Q(f+ fO)]?(f” - fl)~*(f’ - fl-) (11)
1.

xT*(f- f,)T(f - fl”)G(fl)G(fl”)dfldfl”dfdf’ .

Often the truncating function is a rectangle and the Fourier transforin ~(f) is

a sine function. When this substitution is made in Eq. (11), the expression

Is identical to th~ known expression for a spectral estimate that is derived

in the direct domain.6

We should observe from Eq. (6) that theweighti]~g function Q(f) and

the square of the Fou~ier transform of the truncating function affect the bias
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in the sam way, but that their effects on u(f) are different. The two functions

are often referred to interchangeably as “windows.” They should not be; the

overall role of the spectral window (j(f)is different from that of the

function ]~(f)~2.

The effects of windowing and truncation may be easily understood from

a heuristic point of view when viewed in the Fourier transform domair,. We see

fromEq. (5) that spectral components of a stationary process are statistically

independent and from Eq. (9) that components of the Wiener spectrum at different

frequencies are likewise independent. Moreover, the variance of a sFectral

extimate is comparable to its mean. The variance of a windowed spectral esti-

mate is less because this estimate is a sum of independent quantities. When

a process is truncated, however, its spectral components are not independent,

but correlated. Thjs can be shown easily from Eq. (2); the correlation coef-

ficient between gA(f) at different freque :ies is, using Eq. (5)

‘gA*(f)gA(f4)> =
f

G(fl)~*(f - fl)~(f- - fl)dfl . (12)

SIJmSof truncated spectral components, which are f(NICtiOnS of gA(f), may not

have a smaller variance because of the lack of statistical independence of the

sununancis.They are more highly correlated when the truncated segment is smaller;

i.e., when the sine function described by ~(f) is broader i~ the truncation

function is a rectzilgle.

The equivalent degrees of freedom is often used as a measure of the

statistical stability of a spectral measurement. This is the ratio

2P2(fO)/u2(fO),which is sometimes the number of statistically independent

spectral components that determines the estimate P(fO). Analytical expressions

for the equivalent degrees of freedom can be derived for the asymptotic limits

of small and large L, if we assume a rectangular truncation function. Then

its Fourier transform ~(f) is givey by

~(f) = L sine mfL. (Id)

We will also assume that the window weighting function Q(f) is a rectangle

of width Af centered at fO. Equation (11) may be written

-5-



m

Uz(fo) z 2L4
f [[f

sinc[n(f” - fl)L]sinc[m(f - fl)L] G (fl)dfl

1

2
df df”

Af -00

+

co

f

2
sine [n(f- -

1

fl)L] sine [n(f + fl)L]G(fl)dfl . (14)

L -co

If L is large, the central lobe of the sine function is narrow, nd the inte-

gral of the inner integrals is significant only when f’”sfland f or ‘f” are

approximately equal. we will assume that G(fl) varies little Over a region

in frequency space of 41L, twice the width of the central lobe> and we will

remove this function from the inner integral. The expression for u2(fO)

becomes

u2(fo)
I

z 2L2 df df”G2(f)sinc [n(f - f’)L] . (15)

Af

If the central lobe of the sine function is much smaller than Af, we can re-

place the integration limits of f’ by (~,w) and simplify further

UZ(fo) z 2L
J

Gz(f)dfl

when LAf >> 1 and G(f) vary little over a region of size 4/L.

An expression for the ensemble mean spectral estimate can also be de-

rived for the case when Q(f) is a rectangle and ~(f) is a sine function Eq. (6)

becomes

P(fO) = L

[

G(f)df . (17)

A

The equivalent degrees of freedom can be determined from Eqs. (15 and 16) to be

(16)

E.D.F. = L[\G(f)df]2/’G2 (f)df ,

A Af

(18)
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and if, as is often assumed, the best a priori estimate of the Wiener spec-

trumof G(f) is a constant, Eq. (17) becomes
.

E.D.F. = LAf , (19)

a well-known result.

The Wiener spectrum of many pictorial images is not a constant, but can

be several orders of magnitude greater at low frequencies than at high ones.

The equivalent degrees of freedom Is smeller than for constant G(f), because

spectral measurements are dominated by a small part of the spectrum. This

lack of statistical stability is perhaps behind the frequently heard asser-

tion that images”are “not stationary.” There is often no reason to assume, on

an a priori basis, that the statistics of an image differ from place to place,

and without such a priori knowledge a maximum ignorance assumption of stationarity

should be made. It should be kept in mind, Ilowever,that, for commonly encoun-

tered image sizes L and Wiener spectra G(f), many statistical measurements may

be unstable.

An expression similar tG Eq. (17) can be derived for very Small L,

i.e., for LAf C< 1. In this limit, the central lobs of the sine functions is

broad and integrations are performed under the assumption that they vary little

over regions Af in size. This leads to the expected result that there is one

degree of freedom in the limit L + O. Fourier components are highly correlated

when L is small, and the statistics of a sum differ little from that of a single

component.

EXAMPLES

We have numerically compared bias and equivalent degrees of freedom

for rectangular and raised cosine truncating functions t(x). The raised

cosine is defined

t(x) =;(1 + +)

=0 IxI>L . (20)

The parameter L that characterizes the size of the t-uncated r~:gion is the

distance between points for which t(x) is one-half. Data must be included,
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however, over distances of21., although the part of the data function i(x)

that is multiplied by the “tails” of t(x) is greatly deemphasized. The raised

cosine truncating function provides a means for nonzero i(x) to drop gradually

to zero, avoiding the abrupt change that occurs when it is multiplied by a

rectangle function, and the spectral estimation errors created by this abrupt

change, especially for higher frequencies, should be smaller.

Figure 1 is a measure of the measurement error, defined by

p(fO) -+! G(f)df

M.E. = ~ ‘T (21)
J G(f)df

Af

for the two kinds of truncating functions. In all computations, the spectral

window Q(f) is a rectangle with a width Af of 2, and the size of tbe trunca-

tion region L varies from O to 1. This means the size-bandwidth product LAf,

the abscissa of the graph, varies from O to 2. The true value of the Wiener

spectrum G(f) is an exponential, given by

f2
G(f) ‘exp (- ~) s (22)

and the measurement error is calwlated at frequency f. of 10.

The error curve associated with the raised cosine truncation function

is marked by asterisks. It is considerably smaller than the error curve asso-

ciated with the rectangular truncation function when the truncation parameter

L is small. In Fig. 2 the equivalent degrees of freedom, computed from Eqs. 6,

11, and 16, are plotted against the size-bandwidth par..ioeterLAf. The stability

associated with the cosine truncation fdnction is characteristic of a data ex-

tent of 2L, even though most of the data is taken from regions half that long.

In many computations, the spectral window Q(f) is chosen so that the

bias or statistical stability of the computation is within some desired bound.

We should keep in mind, however, that the truncation function t(x) may also

be used as a design parameter. We have seen that an alternative truncation

function can provide smaller bias and greater statistical stability than the

traditional rectangular function when it is possible to gradually, rather than

abruptly, reemphasize the data outside a specified region. This may be useful

in computing spectral estimates of locally stationary data.

-8-



PROFESSIONAL BIOGRAPHY

Martin Lahart received the BSEE from Princeton University in 1960,

the NS in Physics from the University of Mi~higan in 1962, and the PhD in

Optical Sciences from the University of Arizona in 1975. Between i962 and

1971 he worked primarily on industrial applications of optics. He has been

a staff member of the Los Alamos Scientific Laboratory since 1975. He is a

mnber of the Optical Society of Amrica.

1.

2.

3.

4.

5.

6.

REFERENCES

C. W. Helstrom, “Image Restoration by the Method of Least Squares,”
J. Opt SOC. Am., 57, 297-303.—

T. G. $tockhami Jr. and T. M. Cannon, “Blind Deconvolution Through
Digital Signal Processing,” Proc. IEEE 63, 678-692 (1975).—

R. R. Blackman and J. Ii.Tukey, &Measurement of Power Spectra,
(Dover, New York, 1958).

. . —

G. M. Jenkins and D. G. Watts, S ectral Analysis and its Applications,
+- ‘–(Holden-Day, San Francisco, 1968 .

J. H. Laning, Jr. and R. H. Battin, Random Processes in Automatic Control,
(McGraw Hill, New York, 1963), p. 18.

—

G. M. Jenkins and D. G. Watts, op. cit., p. 251.

-9-
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Fig. 1. Comparison of bias errors for rectangle (plain line) and raised
cosine (asterisk line) truncating functions. The bandwtdth Af
is 2 and the size varies from O to 1.
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Fig. 2. Comparison of statistical stability of a spectral measurement
with rectangular (plain line) and raised cosine (asterisk line)
truncating functions.


